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Abstract

Rapid and up-to-date drug susceptibility testing is urgently needed to address the threat of

multidrug resistant tuberculosis. We developed a composite machine learning system to predict

susceptibility from whole-genome sequences for 13 anti-tuberculosis drugs. We trained,

validated and externally tested the system, and assessed its performance against a previously

validated mutation catalogue, existing molecular assays, and World Health Organization Target

Product Profiles. 174,492 phenotypes and 26,328 isolates from 15 countries were studied. The

sensitivity of the model was greater than 90% for all drugs except ethionamide, clofazimine and

linezolid. Specificity was greater than 95% for all drugs except ethambutol, ethionamide, and

bedaquiline, delamanid and clofazimine. The machine learning system was more sensitive than

the catalogue and assay (all p<0.01), and correctly predicted a pan-susceptible regimen with

98% accuracy in MDR-TB samples. The proposed system can help guide therapy and be updated

automatically as new resistance emerges.

Background

In 2019, 10 million individuals fell ill from Mycobacterium tuberculosis infection and 1.4 million

died1. The problem of multidrug resistant tuberculosis (MDR-TB) - defined as resistance to

isoniazid and rifampicin – has been described by World Health Organization (WHO) as a global



health crisis1. Despite advances in diagnostics and treatment, MDR-TB remains under-detected

and treatment success remains stubbornly below 60% globally1,2. It is expected that the

SARS-CoV-2 pandemic will set back progress that has been made by years3.

The WHO has called for universal drug susceptibility testing (DST)4. Culture-based DST is too

slow, expensive and technically challenging to offer a realistic solution. Molecular assays can

rapidly detect resistance to rifampicin, isoniazid and a subset of second-line drugs, but are

limited in the number of resistance-conferring mutations they can detect5, limiting their

sensitivity, although more for some drugs than for others. Some countries already rely on

whole-genome sequencing (WGS) to identify susceptibility to first-line drugs, but nowhere are

routine diagnostic algorithms advanced enough to dispense with culture-based DST where it is

available for second-line, new and repurposed drugs6. Indeed, no predictor has yet been

demonstrated to meet the WHO Target Product Profile thresholds for clinical application for

drugs now recommended for the treatment of MDR-TB7–10.

Artificial intelligence and machine learning algorithms have been suggested as potential

solutions where molecular determinants of resistance are either unknown or complex, such as

gene-gene interactions, while allowing for real-time updating as new resistant samples are

collected11–18. Here, we compare the performance of a previously-validated mutation catalogue

with a composite machine learning DST system to priority anti-tuberculosis agents from WGS

data. We assess the extent to which machine learning can bridge the gap between the already

good performance of catalogue-based predictions for some drugs and what is needed to

dispense with routine phenotypic DST for anti-tuberculosis agents in general.

Results

Characteristics of the datasets

A total of 174,492 phenotypes from 26,328 isolates were studied across two large datasets. The

CRyPTIC dataset derived phenotypes from 96-well broth microdilution plates for 10,859 isolates

from 10 countries. Lineages 1 to 4, 6 and Mycobacterium bovis were represented, with lineage 4



(50%, 5,436/10,859) and lineage 2 (35%, 3,745/10,859) the most common. 28% of samples

(3,033/10,859) were MDR. Phenotypes were available for three first-line antibiotics (isoniazid,

rifampicin, ethambutol), plus rifabutin, and nine second-line antibiotics used against MDR-TB:

two fluoroquinolones (moxifloxacin, levofloxacin), two injectable agents (amikacin, kanamycin),

ethionamide, and four new or repurposed drugs (bedaquiline, delamanid, clofazimine,

delamanid). Prevalence of resistance ranged from 1% for bedaquiline, to 47% for isoniazid

(Table 1). For each new and repurposed drug, a minimum of 69 resistant samples were

available. Pyrazinamide was not present on the microdilution plate for technical reasons. Where

two drugs of the same class are studied, we report results for the one present in WHO

guidelines or the most commonly prescribed in primary results, and for the other in the

supplementary appendix, as is the case kanamycin, rifabutin and levofloxacin. A second,

independent dataset used MGIT-derived phenotypes and included 15,469 isolates from 9

countries, 21% of which were MDR (3,189/15,469). The independent set included phenotypes

for all antibiotics except new-and-repurposed drugs and rifabutin (Table 1).

Machine learning in the CRyPTIC dataset

To assess the performance of the machine learning system on the widest possible set of

antibiotics, it was initially trained on 75% of the samples in the CRyPTIC data set (8,146

randomly selected isolates). Predictions were made for the remaining 25% (2,713 isolates)

(Table 2). For first-line drugs, the sensitivity of the machine learning system was 95% for

isoniazid (1,119/1,173), 97% for rifampicin (906/931) and 95% for ethambutol (387/406), with a

specificity of 99% (1,195/1,207), 98% (1,287/1,315) and 88% (1,326/1,501) respectively. For

second-line drugs against MDR-TB, sensitivity was 96% for moxifloxacin (251/261), 92% for

amikacin (146/158) and 88% for ethionamide (271/309), with a specificity of 96% (1,377/1,438),

99% (2,068/2,090) and 89% (1,694/1,901) respectively. Although there were comparatively few

phenotypically resistant isolates, sensitivities for bedaquiline, delamanid, clofazimine and

linezolid were 94% (15/16), 90% (18/20), 87% (20/23) and 57% (16/28), at the cost of low

specificity (71%, 55%, 72% and 96% respectively). Importantly for clinical decisions on whether

a drug can be given, the negative predictive value was above 98% for all drugs except isoniazid,



where it was 96%. We note the low prevalence of resistance to new and repurpose drugs

(0.7-1%) as a major contributor to high negative predictive value. We assessed whether results

were affected by the split of training and validation data, batch effects, or training and testing

on genetically-related samples from the same site, by repeating the experiment using a

“leave-one-site-out” cross-validation approach, sequentially using each site as the test set, and

training the model on the remaining 10 sites (Table S1 in the Supplementary Appendix).

Performances were similar across all first- and second-line drugs with the exception of new and

repurposed drugs, where sensitivity decreased (67-73%) and specificity increased (73-78%)

using the leave-one-site-out approach. Note that a high proportion of resistant samples to these

agents were from the same site in South Africa (31/69 resistant to bedaquiline, 55/105 for

clofazimine) causing variability when this specific site is used to train or test.

Machine learning in the independent dataset

We further assessed the system’s performance in a large independent dataset. As phenotypic

DST for the independent dataset was based entirely on MGIT, this would also provide a test of

the generalizability of the machine learning system trained on CRyPTIC broth microdilution

plates. We re-trained the machine learning system, this time using the entire CRyPTIC dataset,

and found that predictions on the independent dataset were similarly accurate to those seen

above (Table 3). For first-line drugs, sensitivity was 95% for isoniazid (3,216/3,397), 98% for

rifampicin (2,957/3,021) and 94% for ethambutol (1,765/1,877), with specificity of 99%

(9,493/9,602), 98% (10,298/10,502) and 92% (10,758/10,502) respectively. For second-line

drugs, sensitivity was 93% for moxifloxacin (288/311) and 88% for amikacin (266/302), with

specificity of 96% (2,072/2,168) and 95% (2,403/2,535) respectively. Negative predictive value

was greater than 98% for all drugs. There were no phenotypes to new or repurposed drugs for

which to make predictions for in the independent dataset.

Comparison to the catalogue, molecular assays and target product profiles

We next used a validated mutation catalogue to make predictions for the independent set to

see how it compares to the machine learning system (Table 3). For first-line drugs, sensitivity for

the catalogue was 94% for isoniazid (3,177/3,397), 97% for rifampicin (2,936/3,021) and 89% for



ethambutol (1,676/1,877), with specificity of 99% (9,525/9,602), 99% (10,394/10,502) and 96%

(11,185/10,502) respectively. These results were consistent with the previously-described

performance of this catalogue and that led to its clinical implementation for DST to first-line

drugs in a number of countries6. Nevertheless, these sensitivity results still fell short of the

machine learning system’s performance, which was superior by 1% for isoniazid and rifampin,

and by 5% for ethambutol (p<0.001). The improved sensitivity of the machine learning system

however came at a small cost in specificity which was 1% less for rifampin and 4% less for

ethambutol. The machine learning system proved more sensitive than the catalogue for

moxifloxacin (93% vs 86%, p<0.001), amikacin (88% vs 85%, p<0.001) and ethionamide (84% vs

50%, p<0.01), with 1% less specificity for moxifloxacin, 3% for amikacin and 21% for

ethionamide.

Greater sensitivities can be generated from the catalogue if predictions are reserved for isolates

containing genomic variation that is known to the catalogue19. However, returning

“indeterminate” predictions where novel candidate gene variation is seen in an isolate does not

align well with recent WHO target product profiles that require an optimal indeterminate rate of

less than 3% for DST implementation9. For the catalogue, this rate would have been 6% for

isoniazid, 2% for rifampin, 10% for ethambutol, 9% for moxifloxacin, 14% for amikacin and 36%

for ethionamide – all of which were predicted as susceptible in this analysis. The machine

learning system has the advantage of providing predictions for all isolates (Table S2). We

examined phenotypically resistant samples where an “indeterminate” prediction would have

been made by the catalogue. In those, the machine learning system correctly predicted 41/106

isolates phenotypically resistant to isoniazid that were missed by the catalogue, 81/94 for

ethambutol, 12/15 for moxifloxacin, 2/11 for amikacin and 9/12 for ethambutol. The specificity

of the machine learning system for isolates that would have been called “indeterminate” by the

catalogue ranged from 88% for ethambutol to 99.7% for rifampin (Table S3).

As most patients in the world have little, or no access to phenotypic DST, we assessed the

performance of our system against the expected performance of Xpert MTB/RIF and Xpert XDR

in anticipation of its wider uptake to address the WHO’s call for universal DST. We compared the



performance of the machine learning system to the expected combined performance of the

Xpert platforms for the independent set. The sensitivity of the machine learning system was 4%

greater than that of Xpert for isoniazid (95% vs 91%, p<0.001) and rifampicin (98% vs 94%,

p<0.001), 7% for moxifloxacin (93% vs 86%, p<0.001) and 3% for amikacin (88% vs 85%, p<0.05).

Specificity was equal or within 1% for each drug, with the exception of amikacin (95% vs 98%).

In other words, if 1,000 isolates were resistant to a second-line quinolone or an injectable drug,

the machine learning system would accurately find between 30 and 113 phenotypically

resistant isolates predicted as ‘not resistant’ by Xpert, at the cost of calling between 0 and 34

phenotypically susceptible isolates ‘resistant’ (Table 2).

The World Health Organization target product profiles (TPP) for rapid molecular DST assays

require a minimum sensitivity of 95% for rifampicin, 90% for isoniazid and fluoroquinolones and

80% for other second-line agents; a specificity of 98% for all drugs; and a minimum

indeterminate rate of less than 10% (optimal indeterminate rate of less than 3%). In the CRyPTIC

dataset, the machine learning system met the minimum TPP sensitivity threshold for all drugs,

with the exception of sensitivity for linezolid (57%). Specificity thresholds were met for

isoniazid, rifampicin, levofloxacin and amikacin. They were not met for ethambutol (88%),

moxifloxacin (96%), ethionamide (89%) and new and repurposed drugs (55-72%) - although still

outperforming the specificity of the catalogue and existing molecular assays for each (Table S4).

The machine learning system met the optimal requirement for indeterminate results for all

drugs as it provides predictions for all samples.

Full drug regimen prediction for multidrug resistant isolates

While most DST focuses on predicting susceptibility to individual drugs, clinicians are left with

the task of assembling a full regimen themselves. This is especially challenging for

rifampicin-resistant (RR) and MDR-TB, where new WHO guidelines recommend the inclusion of

new and repurposed drugs like bedaquiline and delamanid for which there is no widely-used

DST.

We therefore trained the machine learning system to predict an entire treatment regimen.

Regimens were designed according to the latest WHO guidance19. A total of 50 possible



regimens were considered, including all combinations of group A, group B and group C drugs

meeting WHO standards (Figure 1 and Table S5)20. As only the CRyPTIC dataset included

phenotypic DST data for new and repurposed drugs, we used the machine learning system

trained on 75% of CRyPTIC to predict regimens for the RR isolates in the 25% test set.

Sufficient phenotypic data were available for 768/931 rifampicin resistant isolates to assess at

least one potential regimen for treatment of MDR-TB. The machine learning system predicted a

susceptible regimen for 482 of these 768 isolates, and was correct in doing so for 472 (98%). In

8 of the 10 remaining regimens, only one drug in each regimen was phenotypically resistant

(Table S6). The system predicted some phenotypic resistance in every potential regimen for the

296 other isolates, of which 139 (47%) isolates had a phenotypically susceptible regimen.

Prevalence of bedaquiline, linezolid and clofazimine resistance was 1-2% (9, 7 and 14 samples

respectively). Considering each drug individually in phenotypically rifampicin-resistant isolates,

the sensitivity for moxifloxacin, levofloxacin and amikacin was respectively 98% (229/233), 96%

(256/267) and 96% (133/139), and specificity 90% (357/398), 96% (393/408) and 99%

(642/652). Sensitivity for bedaquiline and linezolid was 100% (9/9 and 7/7 respectively), and

specificity was 78% and 51% (Table S7 in the Supplementary Appendix).

Discrepancy analysis

We reviewed individual cases where the machine learning system made an incorrect prediction

in the CRyPTIC set. Where a phenotypically resistant isolate was predicted to be susceptible by

the system, we interrogated the predictions from the two subcomponents of the machine

learning system for evidence of a predicted increase in MIC, albeit still below the cutoff. For

isoniazid, 54/1173 phenotypically resistant samples were predicted to be susceptible in the

validation set. One or other of the subcomponents of the machine learning system (ML or the

algorithm) predicted an MIC above the base line or near the ECOFF for 16/54 of these (30%).

For ethambutol, 13/19 (68%) false negatives led to an increase in MIC from one of the two

subcomponents, and 7/19 (37%) from both. Increases in MIC in false negative samples were

found in rifampicin (19/25), ethionamid (24/38), levofloxacin (1/22), moxifloxacin (1/10) and

amikacin (3/12) (Table S8).



Discussion

We assessed the extent to which machine learning can bridge the gap between the good

performance of catalogue-based predictions and what is needed to dispense with routine

phenotypic DST not only for first-line drugs but for almost all other anti-tuberculosis drugs too.

We trained a machine learning system to predict susceptibility to 13 antituberculosis agents

using whole genome sequencing data, and tested its performance on a large independent test

set. We followed best practice guidance for studies evaluating the accuracy of rapid tuberculosis

drug-susceptibility testing (DST)7. The machine learning system fully met WHO target product

profiles (TPP) for three priority drugs in the CRyPTIC dataset - rifampicin, isoniazid, and amikacin

- and met sensitivity but not specificity targets for ethambutol, moxifloxacin, ethionamide and

new and repurposed drugs, with the exception of linezolid where no targets were met.

For drugs where the WHO-endorsed molecular GeneXpert assay is available (rifampicin for

Xpert MTB/RIF, and isoniazid, fluoroquinolones, aminoglycosides and ethionamide for Xpert

MTB/XDR), our system significantly increased the sensitivity and negative predictive values on

the validation and test sets compared to the expected performance of these assays, at a small

cost to specificity. This can be explained by a variety of factors, including that the assays only

look at eight genes and promoter regions and exclude rare variants therein5, while our system is

able to explore genome-wide features, leverage interactions between features and assess

lineage and genetic background through genome-wide features.

The WHO guidelines for the management of MDR-TB recommend giving all patients on long

MDR-TB regimens bedaquiline, linezolid and clofazimine20. Sensitivity and specificity for these

three drugs fall below WHO TPP requirements. Sensitivity of 93%, 90% and 87% in the CRyPTIC

set for bedaquiline, delamanid and clofazimine reflect the very low prevalence of resistance

(15,18 and 20 resistant samples respectively) - while also explaining the high negative predictive

values of >99% for all three drugs. As more resistant isolates are collected, we expect the

sensitivity and specificity of the machine learning system to increase, and NPV to decrease, as

has been the case for other drugs. Nevertheless, a test with a NPV of >99% and sensitivity of



70% would provide value to clinicians who currently have no other test for these new and

repurposed drugs and hence treat their patients empirically in the absence of reliable, rapid and

robust molecular or genotypic DST21, playing a key role in preventing the amplification and

dissemination of resistance.

A key benefit of our approach over molecular DST is the ability to update and train

automatically as new resistant samples are added. This is critical as resistance to existing and

new agents like bedaquiline emerge, avoiding the expensive multi-phase multi-year

development times of molecular assays9,22, or the need to update catalogues through expert

review19. The U.S. Food and Drug Administration (FDA) recently released a regulatory

framework for ‘live’ modifications to artificial intelligence and machine learning-based software

as a medical device23 and has recently provided clearance or approval for several such

diagnostic devices24, paving the way for clinical implementation and dissemination.

We note a number of further novelties and benefits or our systems approach. First, by

combining machine learning with an algorithmic catalogue generation we leverage existing

knowledge, including known genes associated with resistance, avoiding a common complaint

against pure machine learning systems. Second, a prediction can be made for all isolates in a

given set, while previous published catalogue-based methods that met clinical thresholds

required the exclusion of 4-10% of samples with unknown mutations in candidate genes6. Third,

using kmers from sequencing reads allows for genome-wide analysis while being robust to

potential errors or variability in genotype mapping or variant calling, known to affect prediction

of transmission inferences and resistance prediction25. The method also naturally uses wild-type

sequences (the explicit "presence of normal") as prediction features for the machine learning

model - analogous to the stretch of 81 nucleotides in the rpoB gene probed by Xpert - rather

than a list of mutations described by a vcf file, where the "absence of abnormal" is inferred

from the absence of mutations. Fourth, the model predicts MIC as an intermediate step.

Although we have focussed on predicting binary DST results so that we can perform external

validation on MGIT data, our system predicts MICs which would allow treatment to be

individualized both in terms of drugs selection and dosing. MIC predictions could also be used



to assess confidence in a susceptibility prediction and mitigate future errors, with isolates

without any predicted elevation less likely to be resistant than isolates with a sub-resistant

increase in MIC. Fifth, by using an interpretable supervised machine learning algorithm, we

provide a list of useful features used for prediction, which in turn can be used as hypotheses for

potential causal mutations, when combined with protein analysis.

A limitation of this study is the use of a previously-published literature-derived catalogue, rather

than the more cutting-edge, recently-published WHO-endorsed catalogue19. This was impossible

as the WHO catalogue was developed using samples from both the CRyPTC and independent

sets. Second, we were unable to access an external dataset with sufficient resistance to perform

independent validation of predictions to bedaquiline, linezolid, delamanid and clofazimine. As a

result, accuracy metrics for the CRyPTIC dataset which does contain DST for these compounds in

large numbers are reported using both a left-out validation set and cross-validation of models

tested on each site and trained on all other sites. Third, we report the performance of

GeneXpert in silico, but clinical performance of the actual method might of course be different.

This study demonstrates that WGS can now be used to provide clinically actionable

susceptibility prediction for drugs recommended for the treatment of susceptible and of

MDR-TB, using an composite machine-learning system. This system can be used to guide

therapy, and can be straightforwardly updated as resistant samples to new and repurposed

drugs arise and are collected.

Methods

Study design

We performed a training, validation and external testing study of a mutation catalogue and a

machine learning system to predict susceptibility to 13 anti-tuberculosis antibiotics using

whole-genome sequencing (WGS). We trained and validated the system on 10,859 isolates from

11 laboratories in 10 countries collected by the CRyPTIC consortium. Phenotypes were



determined using the UKMYC broth microdilution system26. We then assessed how this system,

trained on UKMYC-derived phenotypes, would perform against a commonly used DST method

in independent samples. For this we made predictions for an external set of isolates used to

derive the WHO catalogue of drug resistant mutations26. We selected only those samples that

had been phenotypically characterized by Mycobacteria Growth Indicator Tube (MGIT), namely

15,239 M. tuberculosis complex isolates from 9 countries (Table 1 for an overview and Table S9

for a detailed description of each dataset). Approval for the CRyPTIC study was obtained26 .

Whole-genome sequencing

All isolates were whole-genome sequenced using Illumina next-generation sequencing

machines, with sequencing protocols varying between sites as previously described26.

Sequencing reads were trimmed and mapped to the reference genome H37Rv, and variants

called using Clockwork (v0.8.3) a bespoke processing pipeline built for CRyPTIC and optimized to

detect both single nucleotide polymorphisms (SNPs) and insertions and deletions (indels). Prior

to mapping and calling, raw nucleotide kmers from sequencing reads were set aside for training

the machine learning predictor.

Phenotypic drug-susceptibility testing

Phenotypic drug-susceptibility testing (DST) for the CRyPTIC training and validation set was

performed across all sites using a standard protocol described elsewhere26. Briefly, samples

were subcultured and inoculated into 96-well broth microdilution plates containing 13 drugs

and designed by the CRyPTIC consortium and manufactured by Thermo Fisher Inc., U.K..

Between 5-10 doubling dilutions were used for each drug, and minimum inhibitory

concentrations (MIC) for each were read after 14 days using three methods for quality

assurance. MICs were converted to predictions of resistance or susceptibility using

epidemiological cutoffs26. As the plate design was modified during the study, the intersect of

both plates was used as the MIC phenotype, and concentrations outside both were

right-censored or left-censored as appropriate (Table S10). Phenotypic DST for the external test

set used the BACTEC MGIT 960 system.



Susceptibility prediction

DST for each sample was predicted using two methods: a mutation catalogue previously tested

and validated in CRyPTIC6, and a machine learning system. Although the catalogue had

previously been tested on 1st line drugs, here we used targets assayed by commercial molecular

assays to expanded the catalogue to cover some second line drugs. The machine learning

system was itself a composite of two complementary predictors (Figure 1). The first predictor

was a kmer-based, hypothesis-free, genome-wide supervised machine learning algorithm. Raw

nucleotide kmers (k=31) from sequencing reads (i.e. prior to mapping or assembly) were used

as features. A total of 1.9 x 109 individual kmers were considered. Where <5 kmers were

identified for an isolate these were considered sequencing errors (Figure S1 in the

Supplementary Appendix). We merged features across patterns27, applied feature selection

using the F-test applied to MICs, and trained an optimized tree-based extreme gradient

boosting method to allow for rapid training, testing and feature interpretation. After training,

the top features relevant to each prediction were mapped to H37Rv using bowtie2 for detailed

feature analysis (Figure S2 & Table S11). The second predictor was an algorithmic approach that

associates mutations with phenotypic resistance modelled on previously described

approaches28. It focussed on the same pre-determined list of candidate genes and promotor

sequences as used for the generation of the WHO M. tuberculosis drug-resistance mutations

catalogue26 (Table S12). After the masking of neutral mutations using the same process as

described26, the remaining genetic variation across candidate genes relevant to a drug was

taken as a unique genetic signature. After the masking of neutral mutations the remaining

genetic variation across candidate genes relevant to a drug was taken as a unique genetic

signature. This included the absence of any remaining variation, and where there was just a

single remaining mutation. The mode MIC from all isolates sharing that unique genetic

signature was then taken to predict MICs in test set isolates that shared the same unique

signature. If no exact match was made to a combination of variants, the highest mode MIC

associated with any individual mutations was used to predict the MIC. Where no match could

be made to any genetic signature described in the training set, the test set phenotype

prediction was left as ‘U’ (unknown). Both methods’ outcomes were combined into a final joint



prediction system using an “or” logic gate, in order to optimize sensitivity and negative

predictive value. Youden’s J statistic was applied to derive the operating threshold of the

system. Performance on the independent test set was generated by training the system on the

entire CRyPTIC dataset. Performance on the validation set is reported by training the system on

CRyPTIC samples not included in it. P-values were calculated using McNemar chi-square test. To

better assess the generalizability of the approach within the CRyPTIC dataset and minimize the

risk of training and testing on genomically-related isolates, we compared main validation results

to those from a leave-one-site-out approach, where each of the 11 sites is left out in turn for

training, but correspondingly used for testing, with performance taken as the mean weighted by

resistance prevalence. We benchmarked the performance of the catalogue and machine

learning system against the expected performance of Xpert® MDR/RIF and Xpert® XDR (Cepheid,

Sunnyvale, U.S.), based on the targets they probe (Table S13).
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